
Math 31 – Take-home Midterm Solutions
Due July 26, 2013

Name:

Instructions: You may use your textbook (Saracino), the reserve text (Gallian), your
notes from class (including the online lecture notes), and your old homework assignments.
All other written materials are forbidden, as are any other electronic materials. You may not
discuss the exam with anyone, and I will not give any assistance in solving the problems. You
may ask me to clarify questions if necessary. Please hand this sheet in with your solutions.
The exam is due on Friday, July 26 at the beginning of class.

Honor statement:

I have neither given nor received any help
on this exam, and I have not discussed the
exam with anyone. I attest that all of the
answers are my own work.
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Question Points Score

1 10

2 8

3 12

4 7

5 7

6 14

7 22

Total 80



1. Consider the cyclic group Z20.

(a) [7 points] Any element x ∈ Z20 can be written in the form

x = a+20 b

for some a ∈ 〈4〉 and some b ∈ 〈5〉. Explain why this is so.

Solution. It will suffice to see that there are a ∈ 〈4〉 and b ∈ 〈5〉 such that 1 = a+20 b.
Since gcd(4, 5) = 1, Bézout’s lemma implies that there exist x, y ∈ Z such that

4x+ 5y = 1.

Define a, b ∈ Z20 by
a = [4x]20, b = [5y]20.

Then a ∈ 〈4〉, b ∈ 〈5〉, and a+20 b = 1. Now if z ∈ Z20 is any element, we have

za+20 zb = z,

and za ∈ 〈4〉 and zb ∈ 〈5〉.

(b) [3 points] The elements a and b from part (a) are actually unique. Why?

Solution. Suppose that x ∈ Z20, and we can write x = a +20 b and x = a′ +20 b
′ for

some a, a′ ∈ 〈4〉 and b, b′ ∈ 〈5〉. Then

(a+20 b)− (a′ +20 b
′) = 0,

or
(a− a′) = (b′ − b)

in Z20. However, a−a′ is a multiple of 4, while b′−b is a multiple of 5. Therefore, both
a−a′ and b′− b are divisible by both 4 and 5, hence by 20. That is, a ≡ a′ mod 20 and
b ≡ b′ mod 20, so each element of Z20 can be written uniquely in the form described in
part (a).

Here is an alternative argument. Note that there are at most 20 possible elements of
the form a +20 b, since there are 5 choices for a and 4 choices for b. But we saw in
part (a) that there are exactly 20 such combinations of a and b, so they must all be
distinct. Therefore, each element of Z20 can be expressed in exactly one way as a+20 b
with a ∈ 〈4〉 and b ∈ 〈5〉.
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2. [8 points] Define On(R) ⊆ GLn(R) by

On(R) =
{
A ∈ GLn(R) : A−1 = AT

}
,

where AT denotes the transpose of A. (You might remember from linear algebra that the
elements of On(R) are called orthogonal matrices.) Verify that On(R) is a subgroup of
GLn(R). [Hint: Recall that if A and B are n × n matrices, then (AB)T = BTAT and
(AT )−1 = (A−1)T .]

Proof. We will first show that On(R) is closed. Let A,B ∈ On(R). Then

(AB)−1 = B−1A−1 = BTAT = (AB)T ,

so AB is also an orthogonal matrix. Clearly the identity matrix belongs to On(R), since

I = I−1 = IT .

Finally, suppose that A ∈ On(R). Then

(A−1)−1 = A = (AT )T = (A−1)T ,

so A−1 ∈ On(R) as well. Therefore, On(R) is a subgroup of GLn(R).

3. Recall that Sn denotes the symmetric group on n letters.

(a) [8 points] Given a fixed permutation σ ∈ Sn, we can define a relation ∼ on the set
{1, 2, . . . , n} as follows: i ∼ j whenever there is an integer k such that

σk(i) = j.

Note that
σk = σ ◦ · · · ◦ σ︸ ︷︷ ︸

k times

.

Prove that ∼ defines an equivalence relation on {1, 2, . . . , n}.

Proof. Let i ∈ {1, 2, . . . , n}. Then i ∼ i, since i = σ0(i) = ι(i). (If you want to deal
only with positive integers, you could recall that |Sn| = n!, so σn! = ι, and i = σn!(i)
for all i.) Therefore, ∼ is reflexive.

If i, j ∈ {1, 2, . . . , n} with i ∼ j, then there is a k ∈ Z such that j = σk(i). But then

σ−k(j) = σ−kσk(i) = ι(i) = i,

so j ∼ i, and the relation is symmetric. (Again, you could show alternatively that
σn!−k(j) = i.)

Finally, suppose that i, j, l ∈ {1, 2, . . . , n} with i ∼ j and j ∼ l. Then j = σk1(i) and
l = σk2(j) for some k1, k2 ∈ Z. But then

l = σk2(j) = σk2(σk1(i)) = σk2σk1(i) = σk1+k2(i),

so l ∼ i. Therefore, ∼ is transitive, and it is an equivalence relation.
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(b) [4 points] Consider the permutation σ ∈ S8 defined by

σ =

(
1 2 3 4 5 6 7 8
5 1 3 7 2 8 4 6

)
If we use this particular σ to define the equivalence relation from part (a) on the set
{1, 2, 3, . . . , 8}, what are the equivalence classes?

Solution. The equivalence classes will all have the form

[i] = {i, σ(i), σ2(i), . . .}.

Therefore, we have

[1] = [2] = [5] = {1, 5, 2}
[3] = {3}
[4] = [7] = {4, 7}
[6] = [8] = {6, 8}

4. [7 points] Suppose that G is a finite group of order n, and m ∈ Z is relatively prime to
n. If g ∈ G and gm = e, prove that g = e.

Proof. Let n = |G|. We know from Lagrange’s theorem that o(g) must divide n. However,
since gm = e, we must also have o(g) | m. But then o(g) must divide gcd(n,m), which is 1.
The only possibility is that o(g) = 1, which forces g = e.

5. [7 points] Let G be a group of order 49. Show that G must have a subgroup of order 7.

Proof. Choose an element a ∈ G with a 6= e. Since o(a) must divide |G| by Lagrange’s
theorem, we must have either o(a) = 7 or o(a) = 49. In the first case we are done, since the
subgroup 〈a〉 has order 7. In the second case (i.e., where G is cyclic), note that a7 has order
7, so the subgroup 〈a7〉 has order 7.

6. Let G be a group with respect to a binary operation ∗. Define another binary operation
, on G by

a, b = b ∗ a.

Use Gop to denote the set G endowed with the binary operation ,.

(a) [7 points] Prove that Gop is a group with respect to the operation ,. (This group is
called the opposite group.)
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Proof. The operation , certainly gives a well-defined binary operation on G. We need
to check that , associative, and we need to verify the existence of an identity and
inverses.

Suppose that a, b, c ∈ G. Then

a, (b, c) = a, (c ∗ b) = (c ∗ b) ∗ a,

while
(a, b) , c = (b ∗ a) , c = c ∗ (b ∗ a).

SInce ∗ is associative, these are the same. Therefore, , is associative as well.

We claim that the identity element of Gop is still e: for any a ∈ Gop, we have

e, a = a ∗ e = a

and
a, e = e ∗ a = a.

Finally, the inverses are the same as well: if a ∈ Gop, then

a−1 , a = a ∗ a−1 = e

and
a, a−1 = a−1 ∗ a = e.

Therefore, Gop is a group.

(b) [7 points] Define ϕ : G→ Gop by ϕ(a) = a−1 for all a ∈ G. Show that ϕ is one-to-one
and onto, and that

ϕ(a ∗ b) = ϕ(a) , ϕ(b)

for all a, b ∈ G.

Proof. The fact that ϕ is one-to-one follows from uniqueness of inverses: ϕ(a) = ϕ(b)
implies that a−1 = b−1, which means that a = b. Similarly, ϕ is onto because every
element has an inverse: given b ∈ Gop, we have

ϕ(b−1) = (b−1)−1 = b.

Finally, if a, b ∈ G, then

ϕ(a ∗ b) = (a ∗ b)−1 = b−1 ∗ a−1 = a−1 , b−1 = ϕ(a) , ϕ(b).

(Note that this shows that ϕ is a homomorphism, and that G ∼= Gop.)

5



7. Let G be a group. For each a ∈ G, define

C(a) = {x ∈ G : ax = xa} =
{
x ∈ G : x−1ax = a

}
.

Thus C(a) can be thought of as the set of all elements of G which commute with a, and it
is called the centralizer of a in G.

(a) [4 points] If G is abelian, prove that C(a) = G for all a ∈ G.

Proof. Suppose that G is abelian, and let g ∈ G. Then ga = ag for all a ∈ G, so
clearly g ∈ C(a). Thus C(a) = G for all a ∈ G.

(b) [6 points] Prove that for any a ∈ G, C(a) is a subgroup of G.

Proof. First we note that e ∈ C(a), since ea = ae = a. Next, if x, y ∈ C(a), then

(xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy),

so xy ∈ C(a) as well. Therefore, C(a) is closed. Finally, if x ∈ C(a), then ax = xa
implies that x−1ax = a, so

x−1a = ax−1,

and x−1 ∈ C(a). Therefore, C(a) is a subgroup of G.

(c) [6 points] For a ∈ G, define

cl(a) =
{
g−1ag : g ∈ G

}
.

Recall that G/C(a) denotes the set of all (right) cosets of C(a) in G. Define a function
f : cl(a)→ G/C(a) by

f(g−1ag) = C(a)g.

Prove that f is one-to-one and onto.

Proof. To show that f is one-to-one, suppose that f(g−1ag) = f(h−1ah) for some
g, h ∈ G. Then C(a)g = C(a)h, so gh−1 ∈ C(a). Therefore,

a = (gh−1)−1a(gh−1) = hg−1agh−1.

But then
h−1ah = g−1ag,

so f is one-to-one. It is certainly onto, since if C(a)g ∈ G/C(a), then f(g−1ag) =
C(a)g.
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[Note: Part (c) is a special case of a major theorem, called the Orbit-Stabilizer Theo-
rem. This result is important in the theory of group actions, and we are dealing with
the case of a group acting on itself by conjugation.]

(d) [6 points] If a, b ∈ G and b = g−1ag for some g ∈ G, prove that C(b) = g−1C(a)g.

Proof. First let x ∈ C(a); then we need to show that g−1xg ∈ C(b). Well, we know
that a = gbg−1, so

(g−1xg)−1b(g−1xg) = g−1x−1gbg−1xg

= g−1x−1axg

= g−1ag

= b,

since x ∈ C(a). Therefore, g−1C(a)g ⊂ C(b). Now suppose that y ∈ C(b). Then
y−1by = b, so

y−1(g−1ag)y = g−1ag.

Multiplying on left and right g and g−1, respectively, we have

gy−1(g−1ag)yg−1 = a,

or
(gyg−1)−1a(gyg−1) = a.

That is, x = gyg−1 ∈ C(a), and y = g−1xg, so y ∈ g−1C(a)g. It follows that C(b) =
g−1C(a)g.
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